Indoor Photovoltaic Energy Cabinet

HJ-Z06-101 HJ-Z12-201 HJ-Z18-301 HJ-Z24-401

Model	HJ-Z06-10I	HJ-Z12-20I	HJ-Z18-30I	HJ-Z24-40I
Power	6KW (maximum 9KW)	12KW (maximum 24KW)	18KW (maximum 36KW)	24KW (maximum 48KW)
Maximum Energy Storage Capacity	10KWh	20KWh	30KWh	40KWh
Energy Input/Output	Mains/Photovoltaic/Energy Storage			
Usage Environment	Indoor			
Installation Method	Floor-mounted			
Dimensions (mm)	1200*700*700	1600*700*700	2000*750*750	2000*1550*800

Product Introduction

Indoor Photovoltaic Energy Cabinet is an integrated device of photovoltaic power generation system installed in the communication base station room. It converts the direct current generated by photovoltaic modules into alternating current and realizes functions such as electric energy storage, management, and supply, providing clean and renewable energy for base station equipment.

.

Product Features

It can generate and store electric energy through photovoltaic power generation when there is light, and use the stored electric energy in the case of no light such as at night or on rainy and cloudy days, achieving 24-hour uninterrupted power supply and improving the stability of base station energy supply.

It can realize functions such as remote monitoring, fault diagnosis, and automatic control, facilitating users to manage and maintain the photovoltaic energy cabinet at the site.

Save Energy Costs

Make full use of the free renewable energy of solar energy, reduce the dependence on traditional commercial power, and lower the electricity cost of base stations.

No greenhouse gas emissions and pollutants are generated during the process of photovoltaic power generation, which helps to reduce the carbon footprint and protect the environment.

Application scenarios

It is applied to scenarios such as communication base stations, smart cities, smart transportation, power systems, and edge sites to provide stable power supply and backup as well as optical distribution lines

